Subscribe to RSS
DOI: 10.1055/a-2516-2361
Role of Intestinal Barrier Disruption to Acute-on-Chronic Liver Failure
Funding None.

Abstract
Acute-on-chronic liver failure (ACLF) is a severe condition in patients with decompensated liver cirrhosis, marked by high short-term mortality. Recent experimental and clinical evidence has linked intestinal dysfunction to both the initiation of ACLF as well as disease outcome. This review discusses the significant role of the gut–liver axis in ACLF pathogenesis, highlighting recent advances. Gut mucosal barrier disruption, gut dysbiosis, and bacterial translocation emerge as key factors contributing to systemic inflammation in ACLF. Different approaches of therapeutically targeting the gut–liver axis via farnesoid X receptor agonists, nonselective beta receptor blockers, antibiotics, and probiotics are discussed as potential strategies mitigating ACLF progression. The importance of understanding the distinct pathophysiology of ACLF compared with other stages of liver cirrhosis is highlighted. In conclusion, research findings suggest that disruption of intestinal integrity may be an integral component of ACLF pathogenesis, paving the way for novel diagnostic and therapeutic approaches to manage this syndrome more effectively.
Keywords
liver cirrhosis - acute-on-chronic liver failure - gut - bacterial translocation - systemic inflammationPublication History
Article published online:
13 March 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1
Arroyo V,
Moreau R,
Jalan R.
Acute-on-chronic liver failure. N Engl J Med 2020; 382 (22) 2137-2145
MissingFormLabel
- 2
European Association for the Study of the Liver.
European Association for the Study of the L. EASL Clinical Practice Guidelines on
acute-on-chronic liver failure. J Hepatol 2023; 79: 461-491
MissingFormLabel
- 3
Trebicka J,
Fernandez J,
Papp M.
et al;
PREDICT STUDY group of the EASL-CLIF Consortium.
The PREDICT study uncovers three clinical courses of acutely decompensated cirrhosis
that have distinct pathophysiology. J Hepatol 2020; 73 (04) 842-854
MissingFormLabel
- 4
Trebicka J,
Bork P,
Krag A,
Arumugam M.
Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver
failure. Nat Rev Gastroenterol Hepatol 2021; 18 (03) 167-180
MissingFormLabel
- 5
Trebicka J,
Amoros A,
Pitarch C.
et al.
Addressing profiles of systemic inflammation across the different clinical phenotypes
of acutely decompensated cirrhosis. Front Immunol 2019; 10: 476
MissingFormLabel
- 6
Bajaj JS,
Reddy KR,
O'Leary JG.
et al.
Serum levels of metabolites produced by intestinal microbes and lipid moieties independently
associated with acute-on-chronic liver failure and death in patients with cirrhosis.
Gastroenterology 2020; 159 (05) 1715-1730.e12
MissingFormLabel
- 7
Prado V,
Hernández-Tejero M,
Mücke MM.
et al.
Rectal colonization by resistant bacteria increases the risk of infection by the colonizing
strain in critically ill patients with cirrhosis. J Hepatol 2022; 76 (05) 1079-1089
MissingFormLabel
- 8
Fernández J,
Clària J,
Amorós A.
et al.
Effects of albumin treatment on systemic and portal hemodynamics and systemic inflammation
in patients with decompensated cirrhosis. Gastroenterology 2019; 157 (01) 149-162
MissingFormLabel
- 9
Trebicka J,
Macnaughtan J,
Schnabl B,
Shawcross DL,
Bajaj JS.
The microbiota in cirrhosis and its role in hepatic decompensation. J Hepatol 2021;
75 (Suppl. 01) S67-S81
MissingFormLabel
- 10
D'Amico G,
Garcia-Tsao G,
Pagliaro L.
Natural history and prognostic indicators of survival in cirrhosis: a systematic review
of 118 studies. J Hepatol 2006; 44 (01) 217-231
MissingFormLabel
- 11
European Association for the Study of the Liver.
European Association for the Study of the L. EASL Clinical Practice Guidelines for
the management of patients with decompensated cirrhosis. J Hepatol 2018; 69: 406-460
MissingFormLabel
- 12
Jalan R,
Williams R.
Acute-on-chronic liver failure: pathophysiological basis of therapeutic options. Blood
Purif 2002; 20 (03) 252-261
MissingFormLabel
- 13
Moreau R,
Jalan R,
Gines P.
et al;
CANONIC Study Investigators of the EASL–CLIF Consortium.
Acute-on-chronic liver failure is a distinct syndrome that develops in patients with
acute decompensation of cirrhosis. Gastroenterology 2013; 144 (07) 1426-1437 , 1437.e1–1437.e9
MissingFormLabel
- 14
Bajaj JS.
Defining acute-on-chronic liver failure: will East and West ever meet?. Gastroenterology
2013; 144 (07) 1337-1339
MissingFormLabel
- 15
Schierwagen R,
Gu W,
Brieger A.
et al;
ACLF-I Investigators.
Pathogenetic mechanisms and therapeutic approaches of acute-to-chronic liver failure.
Am J Physiol Cell Physiol 2023; 325 (01) C129-C140
MissingFormLabel
- 16
Morales-Arráez D,
Ventura-Cots M,
Altamirano J.
et al.
The MELD score is superior to the Maddrey discriminant function score to predict short-term
mortality in alcohol-associated hepatitis: a global study. Am J Gastroenterol 2022;
117 (02) 301-310
MissingFormLabel
- 17
Gustot T,
Fernandez J,
Garcia E.
et al;
CANONIC Study Investigators of the EASL-CLIF Consortium.
Clinical Course of acute-on-chronic liver failure syndrome and effects on prognosis.
Hepatology 2015; 62 (01) 243-252
MissingFormLabel
- 18
Putignano A,
Gustot T.
New concepts in acute-on-chronic liver failure: Implications for liver transplantation.
Liver Transpl 2017; 23 (02) 234-243
MissingFormLabel
- 19
Sundaram V,
Jalan R,
Wu T.
et al.
Factors associated with survival of patients with severe acute-on-chronic liver failure
before and after liver transplantation. Gastroenterology 2019; 156 (05) 1381-1391.e3
MissingFormLabel
- 20
Artru F,
Louvet A,
Ruiz I.
et al.
Liver transplantation in the most severely ill cirrhotic patients: a multicenter study
in acute-on-chronic liver failure grade 3. J Hepatol 2017; 67 (04) 708-715
MissingFormLabel
- 21
Engelmann C,
Thomsen KL,
Zakeri N.
et al.
Validation of CLIF-C ACLF score to define a threshold for futility of intensive care
support for patients with acute-on-chronic liver failure. Crit Care 2018; 22 (01)
254
MissingFormLabel
- 22
Lamatsch S,
Sittner R,
Tacke F,
Engelmann C.
Novel drug discovery strategies for the treatment of decompensated cirrhosis. Expert
Opin Drug Discov 2022; 17 (03) 273-282
MissingFormLabel
- 23
Agarwal B,
Cañizares RB,
Saliba F.
et al.
Randomized, controlled clinical trial of the DIALIVE liver dialysis device versus
standard of care in patients with acute-on- chronic liver failure. J Hepatol 2023;
79 (01) 79-92
MissingFormLabel
- 24
Engelmann C,
Herber A,
Franke A.
et al.
Granulocyte-colony stimulating factor (G-CSF) to treat acute-on-chronic liver failure:
A multicenter randomized trial (GRAFT study). J Hepatol 2021; 75 (06) 1346-1354
MissingFormLabel
- 25
Fernández J,
Acevedo J,
Castro M.
et al.
Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis:
a prospective study. Hepatology 2012; 55 (05) 1551-1561
MissingFormLabel
- 26
Arvaniti V,
D'Amico G,
Fede G.
et al.
Infections in patients with cirrhosis increase mortality four-fold and should be used
in determining prognosis. Gastroenterology 2010; 139 (04) 1246-1256 , 1256.e1–1256.e5
MissingFormLabel
- 27
Borzio M,
Salerno F,
Piantoni L.
et al.
Bacterial infection in patients with advanced cirrhosis: a multicentre prospective
study. Dig Liver Dis 2001; 33 (01) 41-48
MissingFormLabel
- 28
Bajaj JS,
O'Leary JG,
Reddy KR.
et al;
NACSELD.
Second infections independently increase mortality in hospitalized patients with cirrhosis:
the North American consortium for the study of end-stage liver disease (NACSELD) experience.
Hepatology 2012; 56 (06) 2328-2335
MissingFormLabel
- 29
Arroyo V,
Moreau R,
Jalan R,
Ginès P.
EASL-CLIF Consortium CANONIC Study.
Acute-on-chronic liver failure: A new syndrome that will re-classify cirrhosis. J
Hepatol 2015; 62 (1, Suppl): S131-S143
MissingFormLabel
- 30
Jalan R,
Saliba F,
Pavesi M.
et al;
CANONIC study investigators of the EASL-CLIF Consortium.
Development and validation of a prognostic score to predict mortality in patients
with acute-on-chronic liver failure. J Hepatol 2014; 61 (05) 1038-1047
MissingFormLabel
- 31
Fernández J,
Acevedo J,
Wiest R.
et al;
European Foundation for the Study of Chronic Liver Failure.
Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics
and impact on prognosis. Gut 2018; 67 (10) 1870-1880
MissingFormLabel
- 32
Wong F,
Piano S,
Angeli P.
Reply to: correspondence on “clinical features and evolution of bacterial infection-related
acute-on-chronic liver failure”. J Hepatol 2021; 75 (04) 1010-1012
MissingFormLabel
- 33
Sigal M,
Meyer TF.
Coevolution between the human microbiota and the epithelial immune system. Dig Dis
2016; 34 (03) 190-193
MissingFormLabel
- 34
Helander HF,
Fändriks L.
Surface area of the digestive tract - revisited. Scand J Gastroenterol 2014; 49 (06)
681-689
MissingFormLabel
- 35
Allaire JM,
Crowley SM,
Law HT,
Chang SY,
Ko HJ,
Vallance BA.
The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol
2018; 39 (09) 677-696
MissingFormLabel
- 36
Harnack C,
Berger H,
Liu L,
Mollenkopf HJ,
Strowig T,
Sigal M.
Short-term mucosal disruption enables colibactin-producing E. coli to cause long-term perturbation of colonic homeostasis. Gut Microbes 2023; 15 (01)
2233689
MissingFormLabel
- 37
Earle KA,
Billings G,
Sigal M.
et al.
Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 2015;
18 (04) 478-488
MissingFormLabel
- 38
Birchenough GM,
Johansson ME,
Gustafsson JK,
Bergström JH,
Hansson GC.
New developments in goblet cell mucus secretion and function. Mucosal Immunol 2015;
8 (04) 712-719
MissingFormLabel
- 39
Kim YS,
Ho SB.
Intestinal goblet cells and mucins in health and disease: recent insights and progress.
Curr Gastroenterol Rep 2010; 12 (05) 319-330
MissingFormLabel
- 40
Iftekhar A,
Sigal M.
Defence and adaptation mechanisms of the intestinal epithelium upon infection. Int
J Med Microbiol 2021; 311 (03) 151486
MissingFormLabel
- 41
Marchiando AM,
Graham WV,
Turner JR.
Epithelial barriers in homeostasis and disease. Annu Rev Pathol 2010; 5: 119-144
MissingFormLabel
- 42
Barker N,
van Es JH,
Kuipers J.
et al.
Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature
2007; 449 (7165): 1003-1007
MissingFormLabel
- 43
Harnack C,
Berger H,
Antanaviciute A.
et al.
R-spondin 3 promotes stem cell recovery and epithelial regeneration in the colon.
Nat Commun 2019; 10 (01) 4368
MissingFormLabel
- 44
Gerbe F,
Sidot E,
Smyth DJ.
et al.
Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites.
Nature 2016; 529 (7585): 226-230
MissingFormLabel
- 45
Stolfi C,
Maresca C,
Monteleone G,
Laudisi F.
Implication of intestinal barrier dysfunction in gut dysbiosis and diseases. Biomedicines
2022; 10 (02) 10
MissingFormLabel
- 46
Lin M,
Hartl K,
Heuberger J.
et al.
Establishment of gastrointestinal assembloids to study the interplay between epithelial
crypts and their mesenchymal niche. Nat Commun 2023; 14 (01) 3025
MissingFormLabel
- 47
Van der Merwe S,
Chokshi S,
Bernsmeier C,
Albillos A.
The multifactorial mechanisms of bacterial infection in decompensated cirrhosis. J
Hepatol 2021; 75 (Suppl. 01) S82-S100
MissingFormLabel
- 48
Wasmuth HE,
Kunz D,
Yagmur E.
et al.
Patients with acute on chronic liver failure display “sepsis-like” immune paralysis.
J Hepatol 2005; 42 (02) 195-201
MissingFormLabel
- 49
Mookerjee RP,
Stadlbauer V,
Lidder S.
et al.
Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible
and predicts the outcome. Hepatology 2007; 46 (03) 831-840
MissingFormLabel
- 50
Huang DQ,
Mathurin P,
Cortez-Pinto H,
Loomba R.
Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and
risk factors. Nat Rev Gastroenterol Hepatol 2023; 20 (01) 37-49
MissingFormLabel
- 51
Huang DQ,
Terrault NA,
Tacke F.
et al.
Global epidemiology of cirrhosis - aetiology, trends and predictions. Nat Rev Gastroenterol
Hepatol 2023; 20 (06) 388-398
MissingFormLabel
- 52
Wang Y,
Tong J,
Chang B,
Wang B,
Zhang D,
Wang B.
Effects of alcohol on intestinal epithelial barrier permeability and expression of
tight junction-associated proteins. Mol Med Rep 2014; 9 (06) 2352-2356
MissingFormLabel
- 53
Tang Y,
Banan A,
Forsyth CB.
et al.
Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential
role in alcoholic liver disease. Alcohol Clin Exp Res 2008; 32 (02) 355-364
MissingFormLabel
- 54
Rao R.
Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 2009;
50 (02) 638-644
MissingFormLabel
- 55
Basuroy S,
Sheth P,
Kuppuswamy D,
Balasubramanian S,
Ray RM,
Rao RK.
Expression of kinase-inactive c-Src delays oxidative stress-induced disassembly and
accelerates calcium-mediated reassembly of tight junctions in the Caco-2 cell monolayer.
J Biol Chem 2003; 278 (14) 11916-11924
MissingFormLabel
- 56
Seth A,
Sheth P,
Elias BC,
Rao R.
Protein phosphatases 2A and 1 interact with occludin and negatively regulate the assembly
of tight junctions in the CACO-2 cell monolayer. J Biol Chem 2007; 282 (15) 11487-11498
MissingFormLabel
- 57
Rao RK,
Li L,
Baker RD,
Baker SS,
Gupta A.
Glutathione oxidation and PTPase inhibition by hydrogen peroxide in Caco-2 cell monolayer.
Am J Physiol Gastrointest Liver Physiol 2000; 279 (02) G332-G340
MissingFormLabel
- 58
Reiberger T,
Ferlitsch A,
Payer BA.
et al;
Vienna Hepatic Hemodynamic Lab.
Non-selective betablocker therapy decreases intestinal permeability and serum levels
of LBP and IL-6 in patients with cirrhosis. J Hepatol 2013; 58 (05) 911-921
MissingFormLabel
- 59
Trebicka J,
Reiberger T,
Laleman W.
Gut-liver axis links portal hypertension to acute-on-chronic liver failure. Visc Med
2018; 34 (04) 270-275
MissingFormLabel
- 60
Schierwagen R,
Alvarez-Silva C,
Madsen MSA.
et al.
Circulating microbiome in blood of different circulatory compartments. Gut 2019; 68
(03) 578-580
MissingFormLabel
- 61
Lehmann JM,
Claus K,
Jansen C.
et al.
Circulating CXCL10 in cirrhotic portal hypertension might reflect systemic inflammation
and predict ACLF and mortality. Liver Int 2018; 38 (05) 875-884
MissingFormLabel
- 62
Berres ML,
Lehmann J,
Jansen C.
et al.
Chemokine (C-X-C motif) ligand 11 levels predict survival in cirrhotic patients with
transjugular intrahepatic portosystemic shunt. Liver Int 2016; 36 (03) 386-394
MissingFormLabel
- 63
Berres ML,
Asmacher S,
Lehmann J.
et al.
CXCL9 is a prognostic marker in patients with liver cirrhosis receiving transjugular
intrahepatic portosystemic shunt. J Hepatol 2015; 62 (02) 332-339
MissingFormLabel
- 64
Norman DA,
Atkins JM,
Seelig Jr LL,
Gomez-Sanchez C,
Krejs GJ.
Water and electrolyte movement and mucosal morphology in the jejunum of patients with
portal hypertension. Gastroenterology 1980; 79 (04) 707-715
MissingFormLabel
- 65
Such J,
Guardiola JV,
de Juan J.
et al.
Ultrastructural characteristics of distal duodenum mucosa in patients with cirrhosis.
Eur J Gastroenterol Hepatol 2002; 14 (04) 371-376
MissingFormLabel
- 66
Haak BW,
Wiersinga WJ.
The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol 2017; 2 (02)
135-143
MissingFormLabel
- 67
Cani PD.
Gut microbiota - at the intersection of everything?. Nat Rev Gastroenterol Hepatol
2017; 14 (06) 321-322
MissingFormLabel
- 68
Dikopoulos N,
Weidenbach H,
Adler G,
Schmid RM.
Lipopolysaccharide represses cholesterol 7-alpha hydroxylase and induces binding activity
to the bile acid response element II. Eur J Clin Invest 2003; 33 (01) 58-64
MissingFormLabel
- 69
Ridlon JM,
Alves JM,
Hylemon PB,
Bajaj JS.
Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes
2013; 4 (05) 382-387
MissingFormLabel
- 70
Axelson M,
Sjövall J.
Potential bile acid precursors in plasma–possible indicators of biosynthetic pathways
to cholic and chenodeoxycholic acids in man. J Steroid Biochem 1990; 36 (06) 631-640
MissingFormLabel
- 71
Stenman LK,
Holma R,
Eggert A,
Korpela R.
A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption
by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol 2013; 304 (03)
G227-G234
MissingFormLabel
- 72
Litvak Y,
Byndloss MX,
Bäumler AJ.
Colonocyte metabolism shapes the gut microbiota. Science 2018; 362 (6418): 362
MissingFormLabel
- 73
Gómez-Hurtado I,
Santacruz A,
Peiró G.
et al.
Gut microbiota dysbiosis is associated with inflammation and bacterial translocation
in mice with CCl4-induced fibrosis. PLoS One 2011; 6 (07) e23037
MissingFormLabel
- 74
Pandey A,
Galeone A,
Han SY.
et al.
Gut barrier defects, intestinal immune hyperactivation and enhanced lipid catabolism
drive lethality in NGLY1-deficient Drosophila. Nat Commun 2023; 14 (01) 5667
MissingFormLabel
- 75
Shemtov SJ,
Emani R,
Bielska O.
et al.
The intestinal immune system and gut barrier function in obesity and ageing. FEBS
J 2023; 290 (17) 4163-4186
MissingFormLabel
- 76
Hsu CL,
Schnabl B.
The gut-liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol
2023; 21 (11) 719-733
MissingFormLabel
- 77
Lee JY,
Tsolis RM,
Bäumler AJ.
The microbiome and gut homeostasis. Science 2022; 377 (6601): eabp9960
MissingFormLabel
- 78
Zhu L,
Baker SS,
Gill C.
et al.
Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients:
a connection between endogenous alcohol and NASH. Hepatology 2013; 57 (02) 601-609
MissingFormLabel
- 79
Bayoumy AB,
Mulder CJJ,
Mol JJ,
Tushuizen ME.
Gut fermentation syndrome: a systematic review of case reports. United European Gastroenterol
J 2021; 9 (03) 332-342
MissingFormLabel
- 80
Duan Y,
Llorente C,
Lang S.
et al.
Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature
2019; 575 (7783): 505-511
MissingFormLabel
- 81
Chen Y,
Yang F,
Lu H.
et al.
Characterization of fecal microbial communities in patients with liver cirrhosis.
Hepatology 2011; 54 (02) 562-572
MissingFormLabel
- 82
Chen Y,
Guo J,
Qian G.
et al.
Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality.
J Gastroenterol Hepatol 2015; 30 (09) 1429-1437
MissingFormLabel
- 83
Bajaj JS,
Peña-Rodriguez M,
La Reau A.
et al.
Longitudinal transkingdom gut microbial approach towards decompensation in outpatients
with cirrhosis. Gut 2023; 72 (04) 759-771
MissingFormLabel
- 84
Engelmann C,
Adebayo D,
Oria M.
et al.
Recombinant alkaline phosphatase prevents acute on chronic liver failure. Sci Rep
2020; 10 (01) 389
MissingFormLabel
- 85
Kondo T,
Macdonald S,
Engelmann C.
et al.
The role of RIPK1 mediated cell death in acute on chronic liver failure. Cell Death
Dis 2021; 13 (01) 5
MissingFormLabel
- 86
Bajaj JS,
Heuman DM,
Hylemon PB.
et al.
Altered profile of human gut microbiome is associated with cirrhosis and its complications.
J Hepatol 2014; 60 (05) 940-947
MissingFormLabel
- 87
Bajaj JS,
Ridlon JM,
Hylemon PB.
et al.
Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest
Liver Physiol 2012; 302 (01) G168-G175
MissingFormLabel
- 88
Benten D,
Wiest R.
Gut microbiome and intestinal barrier failure–the “Achilles heel” in hepatology?.
J Hepatol 2012; 56 (06) 1221-1223
MissingFormLabel
- 89
Berg RD,
Garlington AW.
Translocation of certain indigenous bacteria from the gastrointestinal tract to the
mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect Immun
1979; 23 (02) 403-411
MissingFormLabel
- 90
Bernardi M,
Moreau R,
Angeli P,
Schnabl B,
Arroyo V.
Mechanisms of decompensation and organ failure in cirrhosis: from peripheral arterial
vasodilation to systemic inflammation hypothesis. J Hepatol 2015; 63 (05) 1272-1284
MissingFormLabel
- 91
Engelmann C,
Clària J,
Szabo G,
Bosch J,
Bernardi M.
Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction,
inflammation, metabolism and mitochondrial dysfunction. J Hepatol 2021; 75 (Suppl.
01) S49-S66
MissingFormLabel
- 92
Piano S,
Fasolato S,
Salinas F.
et al.
The empirical antibiotic treatment of nosocomial spontaneous bacterial peritonitis:
results of a randomized, controlled clinical trial. Hepatology 2016; 63 (04) 1299-1309
MissingFormLabel
- 93
Wiest R,
Rath HC.
Gastrointestinal disorders of the critically ill. Bacterial translocation in the gut.
Best Pract Res Clin Gastroenterol 2003; 17 (03) 397-425
MissingFormLabel
- 94
Worlicek M,
Knebel K,
Linde HJ.
et al.
Splanchnic sympathectomy prevents translocation and spreading of E. coli but not S. aureus in liver cirrhosis. Gut 2010; 59 (08) 1127-1134
MissingFormLabel
- 95
Balmer ML,
Slack E,
de Gottardi A.
et al.
The liver may act as a firewall mediating mutualism between the host and its gut commensal
microbiota. Sci Transl Med 2014; 6 (237) 237ra66
MissingFormLabel
- 96
Pose E,
Coll M,
Martínez-Sánchez C.
et al.
Programmed death ligand 1 is overexpressed in liver macrophages in chronic liver diseases,
and its blockade improves the antibacterial activity against infections. Hepatology
2021; 74 (01) 296-311
MissingFormLabel
- 97
Peiseler M,
Araujo David B,
Zindel J.
et al.
Kupffer cell-like syncytia replenish resident macrophage function in the fibrotic
liver. Science 2023; 381 (6662): eabq5202
MissingFormLabel
- 98
Clària J,
Stauber RE,
Coenraad MJ.
et al;
CANONIC Study Investigators of the EASL-CLIF Consortium and the European Foundation
for the Study of Chronic Liver Failure (EF-CLIF).
Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic
liver failure. Hepatology 2016; 64 (04) 1249-1264
MissingFormLabel
- 99
Albillos A,
Lario M,
Álvarez-Mon M.
Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance.
J Hepatol 2014; 61 (06) 1385-1396
MissingFormLabel
- 100
Albillos A,
de la Hera A,
González M.
et al.
Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune
and hemodynamic derangement. Hepatology 2003; 37 (01) 208-217
MissingFormLabel
- 101
Albillos A,
de-la-Hera A,
Alvarez-Mon M.
Serum lipopolysaccharide-binding protein prediction of severe bacterial infection
in cirrhotic patients with ascites. Lancet 2004; 363 (9421): 1608-1610
MissingFormLabel
- 102
Papp M,
Sipeki N,
Vitalis Z.
et al.
High prevalence of IgA class anti-neutrophil cytoplasmic antibodies (ANCA) is associated
with increased risk of bacterial infection in patients with cirrhosis. J Hepatol 2013;
59 (03) 457-466
MissingFormLabel
- 103
Márquez M,
Fernández-Gutiérrez C,
Montes-de-Oca M.
et al.
Chronic antigenic stimuli as a possible explanation for the immunodepression caused
by liver cirrhosis. Clin Exp Immunol 2009; 158 (02) 219-229
MissingFormLabel
- 104
Wiest R,
Albillos A,
Trauner M,
Bajaj JS,
Jalan R.
Targeting the gut-liver axis in liver disease. J Hepatol 2017; 67 (05) 1084-1103
MissingFormLabel
- 105
Simbrunner B,
Mandorfer M,
Trauner M,
Reiberger T.
Gut-liver axis signaling in portal hypertension. World J Gastroenterol 2019; 25 (39)
5897-5917
MissingFormLabel
- 106
Verbeke L,
Farre R,
Trebicka J.
et al.
Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by
two distinct pathways in cirrhotic rats. Hepatology 2014; 59 (06) 2286-2298
MissingFormLabel
- 107
Lutz P,
Berger C,
Langhans B.
et al.
A farnesoid X receptor polymorphism predisposes to spontaneous bacterial peritonitis.
Dig Liver Dis 2014; 46 (11) 1047-1050
MissingFormLabel
- 108
Van Mil SW,
Milona A,
Dixon PH.
et al.
Functional variants of the central bile acid sensor FXR identified in intrahepatic
cholestasis of pregnancy. Gastroenterology 2007; 133 (02) 507-516
MissingFormLabel
- 109
Marzolini C,
Tirona RG,
Gervasini G.
et al.
A common polymorphism in the bile acid receptor farnesoid X receptor is associated
with decreased hepatic target gene expression. Mol Endocrinol 2007; 21 (08) 1769-1780
MissingFormLabel
- 110
Semmler G,
Simbrunner B,
Scheiner B.
et al.
Impact of farnesoid X receptor single nucleotide polymorphisms on hepatic decompensation
and mortality in cirrhotic patients with portal hypertension. J Gastroenterol Hepatol
2019; 34 (12) 2164-2172
MissingFormLabel
- 111
Úbeda M,
Lario M,
Muñoz L.
et al.
Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation
in cirrhotic rats. J Hepatol 2016; 64 (05) 1049-1057
MissingFormLabel
- 112
Verbeke L,
Farre R,
Verbinnen B.
et al.
The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation
in cholestatic rats. Am J Pathol 2015; 185 (02) 409-419
MissingFormLabel
- 113
Sanyal AJ,
Ratziu V,
Loomba R.
et al.
Results from a new efficacy and safety analysis of the REGENERATE trial of obeticholic
acid for treatment of pre-cirrhotic fibrosis due to non-alcoholic steatohepatitis.
J Hepatol 2023; 79 (05) 1110-1120
MissingFormLabel
- 114
Schwabl P,
Hambruch E,
Seeland BA.
et al.
The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling
and sinusoidal dysfunction. J Hepatol 2017; 66 (04) 724-733
MissingFormLabel
- 115
Adorini L,
Trauner M.
FXR agonists in NASH treatment. J Hepatol 2023; 79 (05) 1317-1331
MissingFormLabel
- 116
Pérez-Paramo M,
Muñoz J,
Albillos A.
et al.
Effect of propranolol on the factors promoting bacterial translocation in cirrhotic
rats with ascites. Hepatology 2000; 31 (01) 43-48
MissingFormLabel
- 117
Mookerjee RP,
Pavesi M,
Thomsen KL.
et al;
CANONIC Study Investigators of the EASL-CLIF Consortium.
Treatment with non-selective beta blockers is associated with reduced severity of
systemic inflammation and improved survival of patients with acute-on-chronic liver
failure. J Hepatol 2016; 64 (03) 574-582
MissingFormLabel
- 118
Jachs M,
Hartl L,
Schaufler D.
et al.
Amelioration of systemic inflammation in advanced chronic liver disease upon beta-blocker
therapy translates into improved clinical outcomes. Gut 2021; 70 (09) 1758-1767
MissingFormLabel
- 119
Jensen MD,
Watson H,
Vilstrup H,
Jepsen P.
Non-selective beta-blockers and risk of sepsis in patients with cirrhosis and ascites:
results from a large observational study. Clin Epidemiol 2023; 15: 775-783
MissingFormLabel
- 120
Sersté T,
Melot C,
Francoz C.
et al.
Deleterious effects of beta-blockers on survival in patients with cirrhosis and refractory
ascites. Hepatology 2010; 52 (03) 1017-1022
MissingFormLabel
- 121
Albillos A,
Krag A.
Beta-blockers in the era of precision medicine in patients with cirrhosis. J Hepatol
2023; 78 (04) 866-872
MissingFormLabel
- 122
Rodrigues SG,
Mendoza YP,
Bosch J.
Beta-blockers in cirrhosis: evidence-based indications and limitations. JHEP Rep Innov
Hepatol 2019; 2 (01) 100063
MissingFormLabel
- 123
Madsen BS,
Havelund T,
Krag A.
Targeting the gut-liver axis in cirrhosis: antibiotics and non-selective β-blockers.
Adv Ther 2013; 30 (07) 659-670
MissingFormLabel
- 124
Bajaj JS,
Tandon P,
OʼLeary JG.
et al.
Outcomes in patients with cirrhosis on primary compared to secondary prophylaxis for
spontaneous bacterial peritonitis. Am J Gastroenterol 2019; 114 (04) 599-606
MissingFormLabel
- 125
Bass NM,
Mullen KD,
Sanyal A.
et al.
Rifaximin treatment in hepatic encephalopathy. N Engl J Med 2010; 362 (12) 1071-1081
MissingFormLabel
- 126
Yu X,
Jin Y,
Zhou W.
et al.
Rifaximin modulates the gut microbiota to prevent hepatic encephalopathy in liver
cirrhosis without impacting the resistome. Front Cell Infect Microbiol 2022; 11: 761192
MissingFormLabel
- 127
Israelsen M,
Madsen BS,
Torp N.
et al;
GALAXY,
MicrobLiver Consortia.
Rifaximin-α for liver fibrosis in patients with alcohol-related liver disease (GALA-RIF):
a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol
Hepatol 2023; 8 (06) 523-532
MissingFormLabel
- 128
Kulkarni AV,
Avadhanam M,
Karandikar P.
et al.
Antibiotics with or without Rifaximin for acute hepatic Encephalopathy in critically
ill patients with cirrhosis: a double-blind, randomized controlled (ARiE) trial. Am
J Gastroenterol 2024; 119 (05) 864-874
MissingFormLabel
- 129
Caraceni P,
Vargas V,
Solà E.
et al;
Liverhope Consortium.
The use of rifaximin in patients with cirrhosis. Hepatology 2021; 74 (03) 1660-1673
MissingFormLabel
- 130
Rimola A,
García-Tsao G,
Navasa M.
et al.
Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus
document. International Ascites Club. J Hepatol 2000; 32 (01) 142-153
MissingFormLabel
- 131
Philips CA,
Pande A,
Shasthry SM.
et al.
Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic
hepatitis: a pilot study. Clin Gastroenterol Hepatol 2017; 15 (04) 600-602
MissingFormLabel
- 132
Philips CA,
Phadke N,
Ganesan K,
Ranade S,
Augustine P.
Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for
severe alcoholic hepatitis. Indian J Gastroenterol 2018; 37 (03) 215-225
MissingFormLabel
- 133
Sharma A,
Roy A,
Premkumar M.
et al.
Fecal microbiota transplantation in alcohol-associated acute-on-chronic liver failure:
an open-label clinical trial. Hepatol Int 2022; 16 (02) 433-446
MissingFormLabel
- 134
Bloom PP,
Tapper EB.
Lactulose in cirrhosis: current understanding of efficacy, mechanism, and practical
considerations. Hepatol Commun 2023; 7 (11) 7
MissingFormLabel
- 135
Gluud LL,
Vilstrup H,
Morgan MY.
Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol
for the prevention and treatment of hepatic encephalopathy in people with cirrhosis.
Cochrane Database Syst Rev 2016; 4: CD003044
MissingFormLabel
- 136
Vince A,
Dawson AM,
Park N,
O'Grady F.
Ammonia production by intestinal bacteria. Gut 1973; 14 (03) 171-177
MissingFormLabel
- 137
Vince A,
Killingley M,
Wrong OM.
Effect of lactulose on ammonia production in a fecal incubation system. Gastroenterology
1978; 74 (03) 544-549
MissingFormLabel
- 138
Vince AJ,
Burridge SM.
Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose.
J Med Microbiol 1980; 13 (02) 177-191
MissingFormLabel
- 139
Moratalla A,
Ampuero J,
Bellot P.
et al.
Lactulose reduces bacterial DNA translocation, which worsens neurocognitive shape
in cirrhotic patients with minimal hepatic encephalopathy. Liver Int 2017; 37 (02)
212-223
MissingFormLabel
- 140
Haase S,
Wilck N,
Haghikia A,
Gold R,
Mueller DN,
Linker RA.
The role of the gut microbiota and microbial metabolites in neuroinflammation. Eur
J Immunol 2020; 50 (12) 1863-1870
MissingFormLabel
- 141
Holle J,
McParland V,
Anandakumar H.
et al.
Gut dysbiosis contributes to TMAO accumulation in CKD. Nephrol Dial Transplant 2024;
39 (11) 1923-1926
MissingFormLabel